A RHYTHM-BASED TRAINING FOR YOUNG FOOTBALL PLAYERS

C. Persichini, S. Demarie, A. Fonte, L. Capranica University of Motor Science (IUSM), Rome, Italy

Rhythmic ability, which implies discrimination of acoustic, visual and kinetic structures and their translation in coordinated motor response, is considered an essential component of sport performances (Meinel, 1984). Football requires high rhythmic ability in order to produce appropriate responses according to the variability of the open skill situation (D’Ottavio and Roticiani, 1990). Nonetheless, there is a lack of information regarding the interaction between rhythmic and technical abilities. Thus, the aim of the study was to ascertain the effects of a rhythmic training program on technical abilities in young football athletes.

24 young football players, ranging in age from 9 to 11 yrs, were randomly divided into an experimental (n=13) and a control group (n=11). For three months, the same football training program was administered twice a week to both groups. However, the experimental group was rhythmically led with a whistle and/or clap hand by their coach. Before and after the program, the subject’s rhythmic ability was evaluated by means of a computerised rhythmic test (Capranica et al., 1995), which included three different rhythmic patterns (R₁; R₂; R₃). To evaluate football technical abilities two field tests (FT) were administered (D’Ottavio, 1994). In addition to the rhythmic and football scores, the velocity variations (VV) from the correct pattern of the rhythmic test and the velocity of execution (TV) of the technical test tests were considered. Differences (p < 0.05) between groups and between pre- and post-training score values were ascertained by means of Mann-Whitney U test. Student’s t-test was applied to velocity values.

Tables 1 and 2 show the descriptive statistics for the studied parameters. Before training, no difference between groups was found for both technical and rhythmic parameters. After training, the experimental group showed better and statistically significant differences for technical and R₃ scores. Pre-post training comparisons showed significant improvements for R₁ and R₂ rhythmic scores of the experimental group only (R₁, p = 0.002; R₂, p = 0.01). Furthermore, the experimental group resulted also statistically faster in the technical test and showed less velocity variations in the rhythmic test after the training program (RV₁, p=0.0001; RV₂, p=0.001; RV₃, p=0.008; TV, p=0.04), while the control group showed no difference.

In conclusion, since at the end of the program the experimental group showed significantly better technical and rhythmic abilities than the control group, rhythmic training proved to be an effective method to improve football technical skills.

REFERENCES