IMMUNOLOGICAL RESPONSE TO A TRAINING MICROCYCLE FOLLOWING SHORT TERM DETRAINING IN MALE COLLEGIATE ROWERS.

1Dept. of Anatomy, 2Dept. of Physiology, 3Dept. of Immunology, Trinity College Dublin, Dublin, Ireland.

Moderate physical activity has been shown to enhance the action of the immune system, whereas repeated studies have shown intense exercise to have an inhibitory effect (Hoffmann-Goetz and Pedersen, 1994). The aim of the present study was to investigate the short term immunological response to a controlled training microcycle.

Eight male collegiate rowers in early season training (age 20.0±0.7 yr, mass 79.8 ± 3.5 kg, % body fat 11.9±1.0%, rowing experience 3.5±0.6 yr, mean±SE) underwent incremental testing (Concept He rowing ergometer, initial load 160W, increment 40 W, duration 3 min) to determine VO2 max, cardiovascular and blood lactate response to exercise. Individual load at lactate threshold (\(T_{1ac}\)) was determined graphically. Mean±SE load at \(T_{1ac}\) and VO2 max were 235.8±14.3W and 5.25±0.14 L·min⁻¹, all subjects subsequently trained at intensities based on their individual \(T_{1ac}\). Non-randomised, supervised weekly training schedule was steady state (S); 3 by 30 min at \(T_{1ac}\) easy (E); 3 by 42-45 min at \(T_{1ac}+20\%\), intermittent high intensity (H); 3 by set of 8 repetitions of 3 min at \(T_{1ac}+20\%\), 2 min at \(T_{1ac}-20\%). Individual training duration in E and H were modified to equate to total work done in S, on alternate days all subjects undertook 60 min at \(T_{1ac}-30\%\). Blood samples for immunological assay were collected pre, at 1 and 2h post the final supervised training session in each weekly phase of the microcycle. T cell subset and lymphocyte counts were measured using a Becton Dickinson FACS Calibur flow cytometer and multiSET software, immunoglobulin assays (IgG, IgA and IgM) were performed using a Behring Nephelometer analyser. Individual post exercise values were expressed as a % of pre exercise values for T cells (CD3+), NK cells (CD16+,CD56+) and total lymphocyte (CD45+). All data were analysed using ANOVA for repeated measures and post-hoc analysis of significant differences (P<0.05) were carried out using Scheffe F test.

All pre exercise values were in the normal range and did not differ significantly across the microcycle. Immunoglobulin fractions IgG, IgA and IgM showed no significant differences at 1 and 2h post exercise at any training intensity. NK cells were significantly reduced post exercise (mean reductions were 75 and 59% for S; 67 and 49% for E; 71 and 56% for H at 1 and 2h respectively). T cells were significantly reduced at 1 and 2h post S (16 and 23%) and at 1h post H (12%); no significant reductions were observed following E. Total lymphocyte counts were significantly reduced at 1 and 2h post S and H, and 1h post E (mean reductions were 26 and 28% for S; 20 and 15% for H; 13% for E respectively).

The biggest reductions in NK cell, T cell and total lymphocyte count occurred during the S and H elements of the microcycle. The lower intensity week E showed the least effect on any of the parameters measured. Alternating active recovery days (1h at \(T_{1ac}-30\%\)) and exercise duration limited to <1h during supervised training sessions in S, E and H prevented any cumulative reduction in counts over each individual week and over the entire microcycle.

REFERENCES

This project was funded by a grant from the Provost’s Academic Development Fund (TCD).